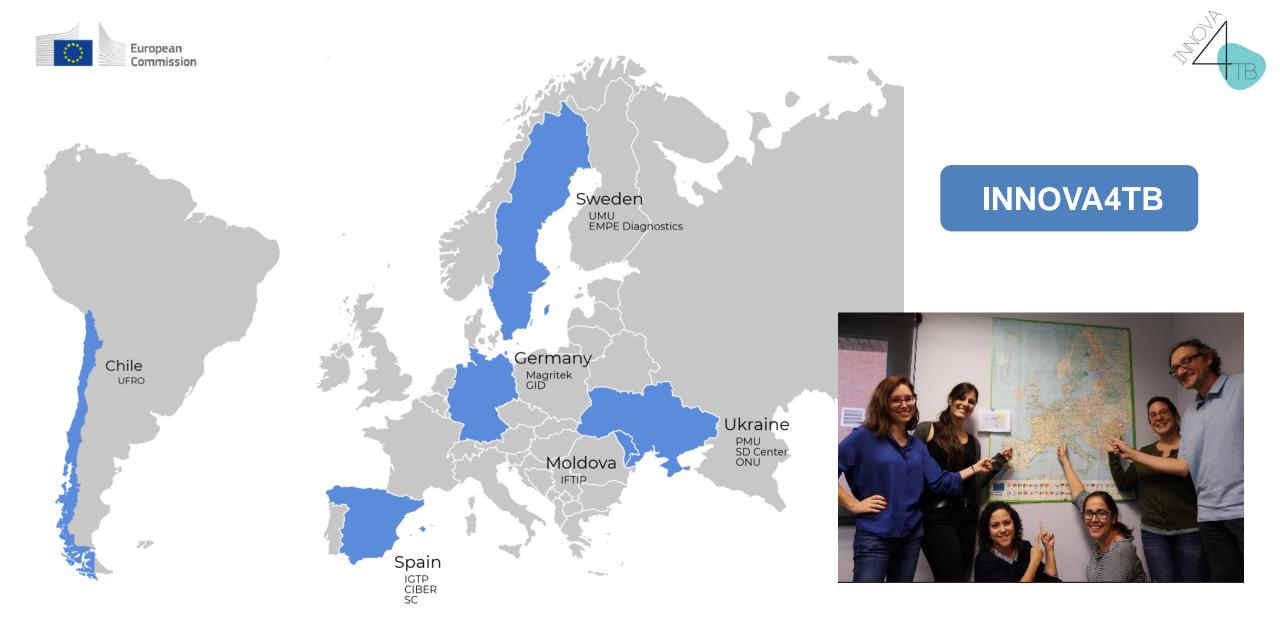
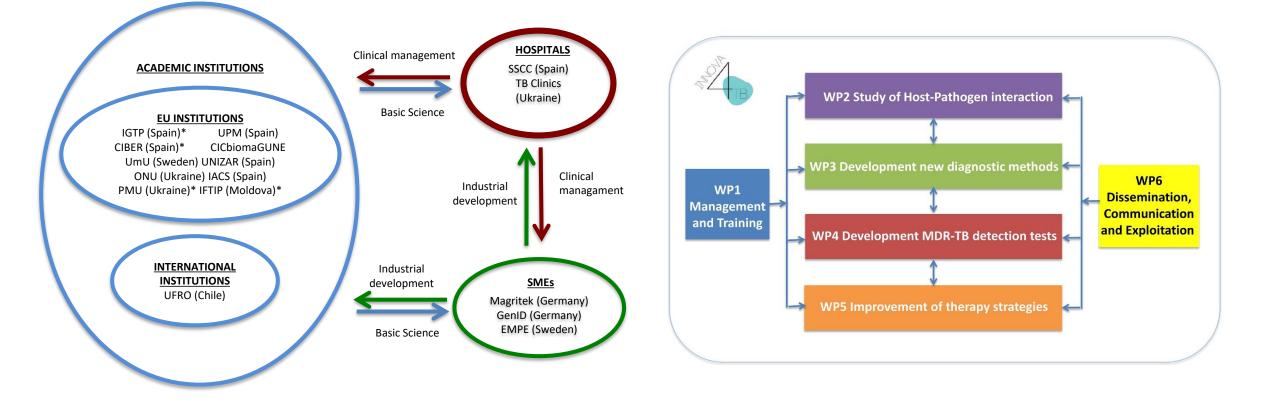
PIPELINE OF NEW DIAGNOSTIC METHODS

José Domínguez Institut d'Investigació Germans Trias i Pujol Universitat Autònoma de Barcelona INNOVA4TB Consortium

21st / April / 2021


SUMMARY

- 1. INNOVA4TB Consortium: Who we are?
- 2. Current methods: Why new methods?
- 3. Novelties in diagnostics: What is coming?
- 4. Final conclusions
- 5. Q&A



INNOVA4TB: Training programme

Early-Stage Researcher

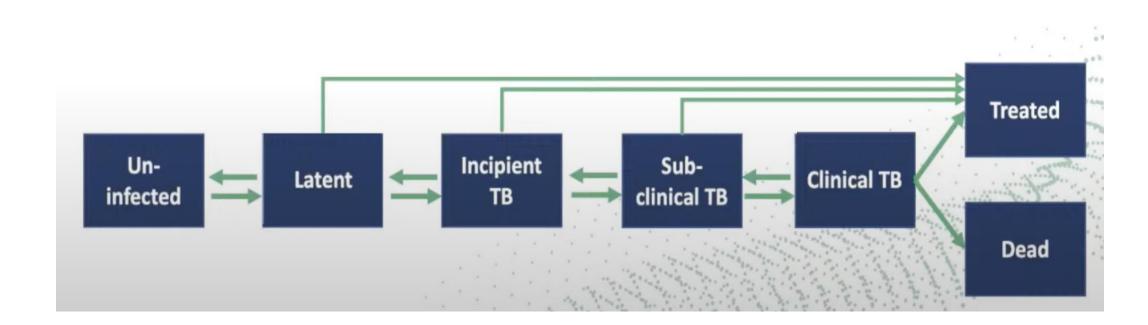
Experienced Researcher

1-12 months

International

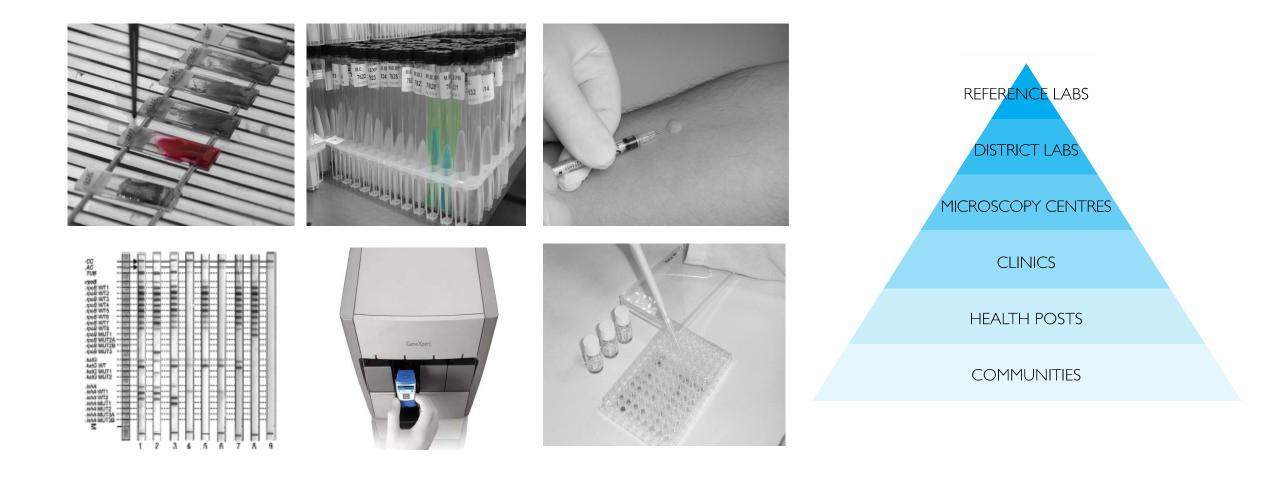
Intersectoral

International Mentor

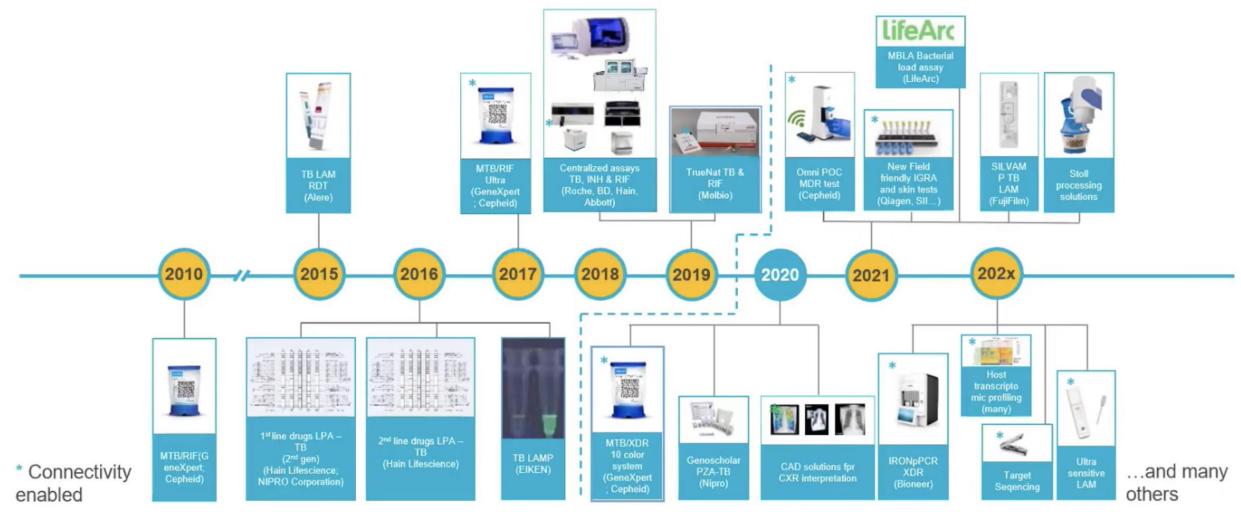

International Supervisor

Scientific and Transversal skills

TB AS A SPECTRUM



TB


CURRENT TB DIAGNOSTIC METHODS

A RICH PIPELINE OF CONNECTED TB DIAGNOSTICS

Adapted from M.Ruhwald

LATENT TB INFECTION

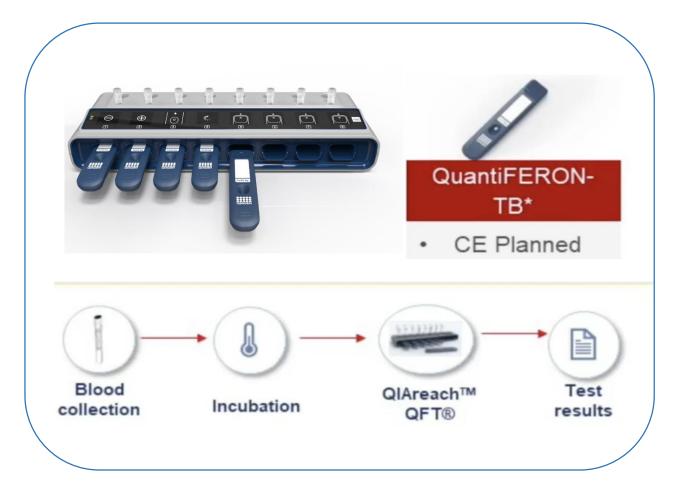
NEW SKIN TESTS

Newer skin tests may improve test specificity and scalability; the evidence has not been systematically reviewed

CTb (Serum Institute of India)

 Recombinant proteins produced in *Lactococcus lactis*

Diaskintest (Generium)


- Recombinant proteins produced in *E Coli* ESAT6-CFP10 (Anhui)
- Zhifei Longcom)
- Recombinant fusion proteins produced in *E Coli*

NOVELTIES IN IGRAS

PROGRESSION TO TB

INCIPIENT / SUBCLINICAL TB

medicine

Discovery and validation of a personalized risk predictor for incident tuberculosis in low transmission settings

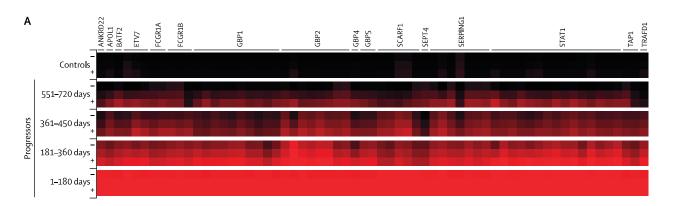
Rishi K. Gupta^{®1}, Claire J. Calderwood¹, Alexei Yavlinsky², Maria Krutikov^{®1}, Matteo Quartagno³, Maximilian C. Aichelburg⁴, Neus Altet^{5,6}, Roland Diel^{7,8}, Claudia C. Dobler^{®9,10}, Jose Dominguez^{11,12,13}, Joseph S. Doyle^{14,15}, Connie Erkens¹⁶, Steffen Geis¹⁷, Pranabashis Haldar^{®18}, Anja M. Hauri^{®19}, Thomas Hermansen²⁰, James C. Johnston²¹, Christoph Lange^{22,23,24,25}, Berit Lange²⁶, Frank van Leth^{®24,27,28}, Laura Muñoz²⁹, Christine Roder^{14,15}, Kamila Romanowski²¹, David Roth²¹, Martina Sester^{®24,30}, Rosa Sloot³¹, Giovanni Sotgiu^{®24,32}, Gerrit Woltmann^{®18}, Takashi Yoshiyama³³, Jean-Pierre Zellweger^{24,34}, Dominik Zenner¹, Robert W. Aldridge², Andrew Copas^{1,3}, Molebogeng X. Rangaka^{1,3,35,36}, Marc Lipman^{37,38,40}, Mahdad Noursadeghi^{®39,40} and Ibrahim Abubakar^{®1,40}

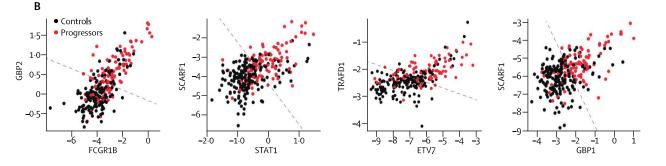
PERISKOPE-TB STUDY

The final prediction model included: **age**, a composite **'TB exposure' variable** (modelled with time-varying covariates to account for non-proportional hazards), **time since migration** for migrants from high TB burden settings, **HIV status**, receipt of a solid **organ or haematological transplant**, normalised percentile **LTBI test result** and commencement of **preventative treatment**

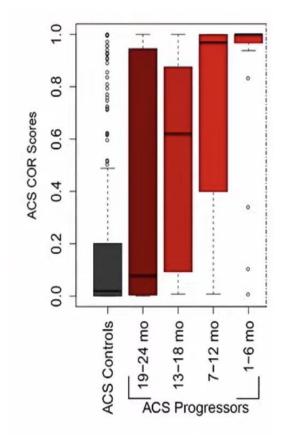
HOST MRNA SIGNATURES EXTENSIVE WORK IN BASIC SCIENCE STARTING TO YIELD FIRST PRODUCTS

QuantuMDx – RISK6 signature Cepheid Host Response cartridge Biomérieux FilmArray® transcriptomic assay 30 marker panel, based on O'Garra Using the Sweeny3 signature Based on SATVI RISK6 . Finger-stick blood, 30min run time Filmarray pouch assay on the Biofire Finger-stick blood, 30 min run time Explored for Explored for platform ٠ Screening test for subclinical and clinical TB Screening test for subclinical and clinical TB Explored for ٠ Treatment monitoring tool (AUC 0.89) Screening/triage test for TB Treatment monitoring tool Risk of developing TB Treatment response marker Risk of developing TB Figure 2: ROC curve for Xpeet-MUB-HR-Prototype test and laboratory-based CRP tes volvinlostical reference standard <10-30 20s (%) A modular transcriptional signature identifies phenotypic heterogeneity of human tuberculosi ity sitiv 28 AUC: 88.6% (82.8%-94.4%) AUC: 85.7% (79.9%-91.4%) 9 Sensitivity ~93% 8 Insert into Q-POC™. Press Go. . TB score . CRP Definite TB vs ORD No prior TB: AUC 87.2% (95%CI 80.2-94.1) Prior TB: AUC 82.7% (95%CI 74.6-80.7) Transfer Specificity ~ 94% sample into cassette 00-Specificity (%) Penn-Nicholson A et al, Scientific Reports 2020 Sweeney et al, Lancet Respiratory Medicine 2016 Berry M et al Nature 2010, Bloom CI et al Plos One 2012, www.guantumdx.com Singhania A et al Nature Comms 2018, Singhania A et al Nat. Immunol Södersten et al JCM in press


2018, www.biomerieux.com


FIND Because diagnosis matters Adapted from M.Ruhwald

Zimmer A, Khatri P, Denkinger C et al in prep.


A blood RNA signature for tuberculosis disease risk: a prospective cohort study

Daniel E Zak^{*}, Adam Penn-Nicholson^{*}, Thomas J Scriba^{*}, Ethan Thompson[†], Sara Suliman[†], Lynn M Amon, Hassan Mahomed, Mzwandile Erasmus, Wendy Whatney, Gregory D Hussey, Deborah Abrahams, Fazlin Kafaar, Tony Hawkridge, Suzanne Verver, E Jane Hughes, Martin Ota, Jayne Sutherland, Rawleigh Howe, Hazel M Dockrell, W Henry Boom, Bonnie Thiel, Tom H M Ottenhoff, Harriet Mayanja-Kizza, Amelia C Crampin, Katrina Downing, Mark Hatherill, Joe Valvo, Smitha Shankar, Shreemanta K Parida, Stefan H E Kaufmann, Gerhard Walzl, Alan Aderem, Willem A Hanekom, for the ACS and GC6-74 cohort study groups[‡]

TB

RISK11 Prognostic Performance

→ 15 months (AUC 0.63):	Poor
→ 12 months (AUC 0.80):	Moderate
\rightarrow 6 months (AUC 0.95):	Excellent

ACTIVE TB

DIGITAL X-RAY

JLK inspection

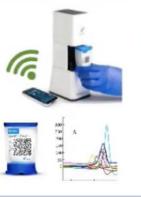
Delft Light

FujiFilm CalneoXair

POC MOLECULAR DIAGNOSTIC METHODS

MOLBIO Trueprep + Truelab + Truenat

- First POC molecular diagnostic on the market
- MTB, MTB+, RIF chips already in use in India
- Work on additional assays / validation ongoing



WHO policy: Truenat MTB or MTB Plus may be used as an initial diagnostic test for TB

OMNI & Ultra cartridge

- · Integrated processing from sample to result
- · Small, portable, in-built connectivity
- Proven cartridge technology
- FIND studies on Omni ongoing

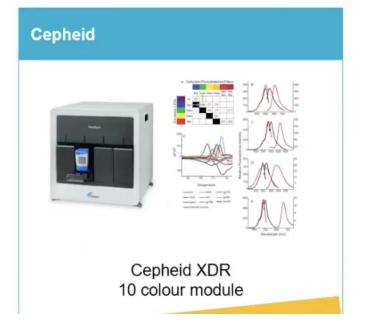
WHO review of Omni and Ultra cartridge planned for 2021

CENTRALIZED MOLECULAR DIAGNOSTICS

Enable

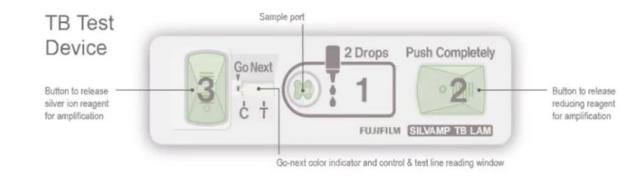
- high-throughput testing
- upfront INH testing
- multi-disease testing
- Comparative analytical study
 - Sensitivity similar to Xpert
 - Resistance detection similar to LPA

De Vos et al. Abstract 1027: Comparative analytical evaluation of four centralized platforms for the detection of M. tuberculosis complex and detection of resistance to rifampicin and isoniazid



NEW CARTRIDGE BASED ASSAYS WITH BROADER DST PROFILE

Adapted from M.Ruhwald



FUJILAM SILVAMP TB LAM

IGTP-Nigeria	FujiLAM				
	All HIV Status	HIV Negative	HIV Positive		
Sensitivity	68.2% (30/44)	65.7% (23/35)	77.8% (7/9)		
Specificity	96.8% (149/154)	98.0% (96/98)	94.6% (53/56)		

IGTP-Haiti	Standardized case definitions for TB			
FujiLAM	Unlikely TB	Unconfirmed TB	TB confirmed	Total
Negative	3	47	2	52
Positive	1	3	3	7
Total	4	50	5	59

CONCLUSIONS

- Promising methods, biomarkers and signatures are coming to allow accurate diagnosis and prognosis.
- It is critical to validate in different geographic settings and to translate the test to a near-patient platform.
- <u>Mandatory good communication between all the professionals</u> involved in TB control and patient associations and communities.

@INNOVA4TB

#INNOVA4TB is an international research consortium between Academia, hospitals & SMEs from high & medium/low #tuberculosis incidence countries. Target: end #TB

🔛 Data de registre: desembre de 2018

@Oneandahalf_Lab

The objective of our Twitter account is to inform you about our **#research** on respiratory infections; mainly **#Tuberculosis** and **#Staphaureus** infections.

Ο

Ø Badalona, Barcelona

IN

www.germanstrias.org www.innova4tb.com

@Oneandahalf_Lab
@INNOVA4TB

